STUDIES ON CASCARA, PART 2.¹ STRUCTURES OF CASCAROSIDES E AND F

PAOLO MANITTO, DIEGO MONTI, GIOVANNA SPERANZA,*

Dipartimento di Chimica Organica e Industriale, Università di Milano, and Centro di Studio sulle Sostanze Organiche Naturali, CNR, via Venezian 21, I-20133 Milano, Italy

NADIA MULINACCI, FRANCO F. VINCIERI,

Dipartimento di Scienze Farmaceutiche, Università di Firenze, via G. Capponi 9, I-50121 Firenze, Italy

Alberto Griffini,

Inverni Della Beffa, R&D Laboratories, via Ripamonti 99, I-20141 Milano, Italy

and GIORGIO PIFFERI

Istituto di Chimica Farmaceutica, Università di Milano, v. le Abruzzi 42, I-20131 Milano, Italy

ABSTRACT.—The structures and preferred conformations of cascarosides E[5] and F[6], two new O,C-diglucosylanthrones from *Rhamnus purshiana* bark, have been determined by spectroscopic methods.

Continuing our chemical studies on cascara bark [*Rhamnus purshiana* DC., (Rhamnaceae)] (1), a well known cathartic drug (2), we report here the isolation and structural elucidation of two new O,C-diglucosylanthrones, which we have named cascarosides E [**5**] and F [**6**]. They represent the first $10-C-\beta$ -D-glucopyranosyl-9-anthrones of the emodin series found in Nature, with the other known examples being derivatives in the chrysophanol (1, 3–6), aloe-emodin (1, 7-13), and rhein (14) series.

The two new compounds were obtained from a commercial extract of R. *purshiana* (Purselect^R, Indena) according to the procedure described in the Experimental. Their uv and cd spectra revealed strong resemblances to those of cascarosides A, B, C [1], and D [2], previously isolated from the same source (1), thus suggesting a common 10-Cglucosyl-9-anthrone skeleton. This was further supported by inspection of the ¹H- and ¹³C-nmr spectra of the compounds under investigation (Tables 1 and 2). ¹H- and ¹³C-nmr data of cascarosides A–D (1) were used as refer-

	\mathbf{R}_1	\mathbf{R}_2	Х	Y
1	β-D-Glcp	Н	β-D-Glcp	Н
2	β -D-Glcp	Н	Н	β-D-Glcp
3	н	OH	β -D-Glcp, H	
£	Н	OH	=	0
5	β- D-Glcp	OH	β-D-Glcp	н
6	β -D-Glc p	OH	Н	β-D-Glcp

ences for chemical shift assignments, in addition to homonuclear decoupling experiments, ¹H nOe, DEPT, and onebond and long-range heteronuclear 2D nmr correlations.

In particular, ¹H-nmr signals were observed, indicating the presence of an ArCH₃ group and of two pairs of metacoupled aromatic protons, as well as three ¹³C-nmr peaks due to oxygen-bearing aromatic carbons. While the protons ortho- to the methyl group (as proved by nOe and ¹H-¹H COSY nmr) showed approximately the same chemical shifts as in cascarosides C [1] and D [2] (1), the frequencies of the other pair of metacoupled protons appeared markedly upfield shifted (ca. -0.55 ppm for H-5

¹For Part 1, see P. Manitto et al. (1).

Derrorb	Compounds		
Proton	5	6	
H-2	6.64 (br s)	6.61 (br s)	
H-4	6.83 (br s)	6.79 (br s)	
H-5	6.65 (d, 2.3)	6.70 (d, 2.1)	
H-7	6.77 (d, 2.3)	6.81 (d, 2.1)	
H-10	4.41 (d, 2.1)	4.44 (d, 1.5)	
Me-3	2.34 (s)	2.33 (s)	
H-1'	3.35 (dd, 9.5, 2.1)	c	
H-2'	3.00 (dd, 9.5, 9.2)	3.09 (dd, 9.2, 8.7)	
H-3'	3.28 (dd, 9.2, 8.4)	3.28 (dd, 9.5, 8.7)	
H-4'	2.86 (dd, 9.6, 8.4)	2.95 (dd, 9.5, 8.7)	
H-5′	2.89–2.96 (m)	2.83–2.88 (m)	
H _a -6'	3.55 (dd, 11.7, 2.6)	3.52 (dd, 11.9, 2.5)	
H _b -6′	3.36 (dd, 11.7, 5.4)	3.39 (dd, 11.9, 5.2)	
H-1"	4.86 (d, 7.4)	4.87 (d, 7.4)	
H-2"	3.60 (dd, 8.9, 7.4)	3.63 (dd, 8.9, 7.4)	
H-3"	3.43-3.52 (m)	3.43-3.50 (m)	
H-4"	3.43-3.52 (m)	3.43-3.50 (m)	
H-5″	3.43-3.52 (m)	3.43-3.50 (m)	
H _a -6"	3.93 (dd, 12.0, 1.8)	3.95 (br d, 11.9)	
Н _ь -6″	3.76 (dd, 12.0, 4.7)	3.75 (dd, 11.9, 4.4)	

TABLE 1. ¹H-Nmr (300 MHz) Data (ppm) of Cascarosides E [5] and F [6] in CD₃OD at 25°.⁴

^aSplitting patterns and J values (Hz) are given in parentheses.

^bPrimed and doubly primed numbers refer to positions of the *C*- and *O*-glucosyl residues, respectively. ^cObscured by the solvent signal.

and -0.60 for H-7), in agreement with the presence of an additional OH group in that aromatic ring. Moreover, the negative dcims of both products were consistent with a molecular formula of $C_{27}H_{32}O_{14}$ and with the loss of an Olinked C_6 -glycosyl residue (M-162).

All these data allowed structures of 0-glucosides of 10-C-glucopyranosylemodin-9-anthrone [3] to be assigned to the new cascarosides (named E and F), whose epimeric relationship at C-10 resulted from their rapid base-catalyzed interconversion (7). Therefore, the position of the 0- β -D-glucopyranosyl residue [at the C-1-OH or the C-6-OH or the C-8-OH] and the absolute configuration of C-10 in each compound remained the only structural details to be clarified.

The C-1 attachment of the Oglucosyl group was ruled out through consideration of the nOe association between the anomeric proton (H-1") and H-7 (see Experimental), as well as the absence of "glycosylation shifts" for the resonance frequencies of H-2 and H-4 by comparing cascarosides C [1] and D [2] (1) and the new cascarosides. That the glucosyl group was linked to the oxygen at the C-8 position could then be inferred by inspection of the ¹H-nmr spectrum in the low-field region beyond δ 8. The occurrence of one sharp signal (1H) at δ 12.41 and 12.80, for cascarosides E [5] and F [6], respectively, was indicative of the presence in their molecules of only one phenolic group engaged in intramolecular hydrogen bonding with the C-9 carbonyl group. The second OH resonance appeared as a broad signal in the region δ 10.5–11.5 in both compounds. It was observed that the ¹H-nmr spectrum of emodin [4] in DMSO- d_6 shows three OH resonances at δ 12.04, 11.97 (sharp singlets), and 11.3 (br s, OH-6).

At this point, on the basis of nOe associations and the conformational preference shown in Figure 1 (1,7,8), the last ambiguity concerning the stereogenic center of C-10 was solved in favor of the

<u> </u>					
Cabad	Compounds				
Carbon	5	6			
1	161.86	162.24			
2	117.02	116.75			
3	146.23	145.98			
4	121.67	119.82			
5	111.44	112.54			
6	166.45	164.17			
7	106.41	104.93			
8	161.86	161.71			
9	191.44	191.32			
10	46.39	46.21			
Ме	21.95	21.95			
la	119.80 ^b	118.60 ^b			
4a	140.97	145.24			
5a	149.70	147.15			
82	119.34 ^b	117.33 ^b			
1'	85.93	86.23			
2'	71.80	71.83			
3'	79.97	79.98			
4'	72.20	71.83			
5'	81.40	81.39			
6'	63.58	63.11			
1″	105.09	103.92			
2"	74.97	74.68			
3"	77.29°	77.66°			
4"	71.28	71.24			
5"	78.65°	78.56°			
6"	62.56	62.60			

TABLE 2. ¹³C-Nmr (75.47) Data (ppm) of Cascarosides E [**5**] and F [**6**] in CD.OD at 25°.

⁴Primed and doubly primed numbers refer to positions of the *C*- and *O*-glucosyl residues, respectively.

^{b,c}Signals with the same superscript are interchangeable.

10*R*-configuration for the diastereoisomer moving more slowly by hplc. This compound was then called cascaroside *E* [5] by analogy with cascarosides A and C [1] having the same chirality sense (plus) of the helical array C-4a-C-10-C-1'-O in the preferred conformation shown in Figure 1 (C-4a is the angular carbon of the alkyl-substituted aromatic ring). Therefore, according to a classification suggested previously (7), and based on the relative orientation of the constitutionally non-symmetric chromophore with respect to the *C*-glucosyl moiety, cascarosides A, C [1] and E [5] belong to the *P*-helicity group.

The compound moving faster by hplc (cascaroside F [6]) exhibited nOe associations between protons of the two pairs H-1',H-2' and H-4,H-5 which did not match those of cascaroside E [5], as expected considering the epimeric relationship at C-10 between the two compounds. Thus, cascaroside F [6] is classified in the *M*-helicity group together with cascarosides B and D [2]. It can also be pointed out that the cd spectra of cascarosides E [5] and F [6] showed strong similarities with those of A,C and B,D, respectively (1).

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—¹Hand ¹³C-nmr spectra were recorded on a Bruker AC 300 spectrometer using the solvent signal as internal standard: 3.30 and 49.00 ppm from TMS for ¹H and ¹³C, respectively, in the case of CD₃OD, and 2.50 ppm from TMS for ¹H in the case of DMSO- d_6 . Negative dcims were obtained on a Finnigan-MAT 4610 instrument. Cd spectra were obtained on a Jasco-500 instrument. Hptlc was carried out with Merck precoated Si gel 60 F254 plates (0.25 mm). Prep. hplc was carried out on a Perkin-Elmer apparatus, comprised of a Series LC 410 pump connected to a LC 95 uv detector. Analytical hplc was performed on a Hewlett-Packard 1090 L liquid chromatograph, connected to a 1040 A photodiode array detector and a HP 9000 computer station.

EXTRACTION AND ISOLATION .--- Preliminary fractionation of cascarosides A/B and C/D was performed as previously reported (1) using 5 g of commercial R. purshiana extract (Purselect^{\bar{R}}). Fractions containing mixtures of cascarosides C [1], D [2], E [5], and F [6] were evaporated to dryness,and the residue dissolved in 0.03% aqueous HOAc-MeCN (92:8), and subjected to prep. hplc [column, Merck Lichrosorb RP-18 (7 µm, 10 mm i.d.×25 cm); mobile phase, solvent A: 0.03% aqueous HOAc-MeCN (92:8), solvent B: MeOH, linear gradient of 10-100% B for 35 min; flow rate, 6 ml/min; detector, uv (254 nm)]. Four fractions corresponding to single peaks having R_s of 20.9 min (cacaroside D) [2], 23.1 min, 27.8 min (cascaroside C) [1], and 32.7 min were collected. The eluate containing the compound with R_i 23.1 min was concentrated under reduced pressure and lyophilized to give cascaroside F [6] (32 mg), which appeared pure by analytical hplc {column, LiChrosorb RP-18 (5 μ m, 4.6 mm i.d. × 12.5 cm);

mobile phase, solvent A: 0.03% aqueous HOAc, solvent B: MeCN, solvent C: MeOH, linear gradients from 92% (A) and 8% (B) to 78% (A), 8% (B), and 14% (C) in 15 min, then to 70% (A), 15% (B), and 15% (C) in 10 min; flow rate, 1.5 ml/min; detector, uv (254 nm)].

The eluate containing the compound with R_r 32.7 min was further purified by hptlc [CHCl₃-MeOH-H₂O (7:3:0.5)]. The bands with R_f 0.2 were collected and eluted with MeOH-CHCl₃ (2:3). After removal of the solvent under reduced pressure, addition of H₂O and lyophilization, cascaroside E [**5**] (20 mg) was obtained and shown to be pure by analytical hplc (chromatographic conditions as above).

Cascaroside E [5].—Mp 197–199°; $[\alpha]^{25}$ D -95.4° (c=0.1, MeOH); R, 23.7 min (analytical hplc); uv λ max (MeOH) (log ϵ) 210 (4.32), 246 (3.94), 272 (3.83), 335 nm (4.00); cd $\Delta\epsilon$ nm (c=0.091 mM, MeOH) 235(-1.99), 265(+4.84), 310 (-11.11), 355 (+4.56), 400 (+0.14); ¹Hnmr data (300 MHz, CD₃OD), see Table 1; ¹³Cnmr data (75.47 MHz, CD₃OD), see Table 2; nOe associations (% intensity enhancement) from H-1' to H-5 (3.7), from H-2' to H-4 (6.4), from H-1" to H-7 (9.7), from H-4 to H-2' (7.3), from H-5-to H-1' (2.3), from H-7 to H-1" (8.5); dcims m/z 580 [M]⁻, 442, 418, 280, 256.

Cascaroside F [6].—Mp 176–178°; $[\alpha]^{2^5}D$ -69.5° (c=0.1, MeOH); R, 15.9 min (analytical hplc); uv λ max (MeOH) (log ϵ) 210 (4.33), 246 (3.96), 270 (3.82), 336 nm (4.00); cd $\Delta \epsilon$ nm (c=0.089 mM, MeOH) 230 (-3.42), 245 (-5.13), 255 (-4.27), 265 (-5.13), 315 (+9.69), 355 (-5.13), 400 (-0.28); ¹H-nmr data (300 MHz, CD₃OD), see Table 1; ¹³C-nmr data (75.47 MHz, CD₃OD), see Table 2; nOe associations (% intensity enhancement) from H-1' to H-4 (2.0), from H-2' to H-5 (3.1), from H-1" to H-7 (7.1), from H-4 to H-1' (not calculated due to overlap of the solvent signals in the reference spectrum), from H-5 to H-2' (5.3), from H-7 to H-1" (6.5); dcims m/z 580 [M]⁻, 442, 418, 280, 256.

ACKNOWLEDGMENTS

Thanks are due to MURST (Italy) for financial support.

LITERATURE CITED

- P. Manitto, D. Monti, G. Speranza, N. Mulinacci, F.F. Vincieri, A. Griffini, and G. Pifferi, J. Chem. Soc., Perkin Trans. I, 1577 (1993).
- V.E. Tyler, L.R. Brady, and J.E. Robbers, "Pharmacognosy," Lea and Febiger, Philadelphia, 9th Edn., 1988, pp. 60–62.
- K. Hata, K. Baba, and M. Kozawa, Chem. Pharm. Bull., 26, 3792 (1978).
- J.M. Conner, A.I. Gray, T. Reynolds, and P.G. Waterman, *Phytochemistry*, 26, 2995 (1987).
- J.M. Conner, A.I. Gray, T. Reynolds, and P.G. Waterman, *Phytochemistry*, 29, 941 (1990).
- 6. H.W. Rauwald and D.D. Niyonzima, Z. Naturforsch., 46C, 177 (1991).
- 7. P. Manitto, D. Monti, and G. Speranza, J. Chem. Soc., Perkin Trans. I, 1297 (1990).
- H.W. Rauwald, K. Lohse, and J.W. Bats, Angew. Chem., Int. Ed. Engl., 28, 1528 (1989).

- J.M. Conner, A.I. Gray, T. Reynolds, and P.G. Waterman, *Phytochemistry*, 28, 3551 (1989).
- M.H. Farah, R. Andersson, and G. Samuelsson, *Planta Med.*, 58, 88 (1992).
- 11. H.W. Rauwald and A. Beil, *J. Chromatogr.*, **639**, 359 (1993).
- 12. H.W. Rauwald, A. Beil, and S. Prodöhl-

C.P., Planta Med., 57 Suppl. 2, A129(1991).

- 13. H.W. Rauwald, K. Lohse, and J.W. Bats, Z. Naturforsch., **46B**, 551 (1991).
- T. Yamagishi, M. Nishizawa, M. Ikura, K. Hikichi, G.-I. Nonaka, and I. Nishioka, *Chem. Pharm. Bull.*, **35**, 3132 (1987).

Received 23 May 1994